Rutgers University: Algebra Written Qualifying Exam

Exercise.

(a) Prove that for any square matrices A and B of size n with coefficients in some field the characteristic polynomial of $A B$ equals that of $B A$.

Solution.

Similar matrices have the same characteristic polynomial.

$$
\text { Proof: } \quad \begin{aligned}
p_{M_{1}}(\lambda) & =\operatorname{det}\left(M_{1}-\lambda I\right) \\
& =\operatorname{det}\left(P^{-1} M_{2} P-\lambda P^{-1} I P\right) \\
& =\operatorname{det}\left(P^{-1}\left(M_{2}-\lambda I\right) P\right) \\
& =\operatorname{det}\left(P^{-1}\right) \operatorname{det}\left(M_{2}-\lambda I\right) \operatorname{det}(P) \\
& =\operatorname{det}\left(M_{2}-\lambda I\right) \\
& =p_{M_{2}}(\lambda)
\end{aligned}
$$

If A or B is invertible then $A B$ and $B A$ are similar.
WLOG assume A is invertible, then $B A=A^{-1}(A B) A$
Thus $A B$ and $B A$ have the same characteristic polynomial.
If A and B are both non-invertible, we need to do a bit more:
By Schur's formula:

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\operatorname{det}(A) \operatorname{det}\left(D-C A^{-1} B\right) \text {, if } A \text { is invertible } \\
& \operatorname{det}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\operatorname{det}(D) \operatorname{det}\left(A-B D^{-1} C\right) \text {, if } D \text { is invertible } \\
& \left.\operatorname{det}\left[\begin{array}{cc}
\lambda I_{n} & A \\
B & I_{n}
\end{array}\right]=\operatorname{det}\left(\lambda I_{n}\right) \operatorname{det}\left(I_{n}-A \lambda^{-1} I_{n} B\right) \right\rvert\, \operatorname{det}\left[\begin{array}{cc}
\lambda I_{n} & A \\
B & I_{n}
\end{array}\right]=\operatorname{det}\left(I_{n}\right) \operatorname{det}\left(\lambda I_{n}-B I_{n} A\right) \\
& =\operatorname{det}\left(\lambda I_{n}-\lambda \lambda^{-1} A B\right) \quad=\operatorname{det}\left(\lambda I_{n}-B A\right) \\
& =\operatorname{det}\left(\lambda I_{n}-A B\right) \\
& =p_{A B}(\lambda) \\
& \Longrightarrow p_{A B}(\lambda)=p_{B A}(\lambda)
\end{aligned}
$$

And thus the characteristic polynomial of $A B$ equals that of $B A$
(b) Give an example of square matrices A and B such that the minimal polynomial of $A B$ does not equal that of $B A$.

Solution.

$$
\left.\begin{array}{rlrlr}
A & =\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] & & \text { and } & B
\end{array}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)
$$

